USING THE RANDOM ITERATION ALGORITHM TO CREATE FRACTALS

UNIVERSITY OF MARYLAND DIRECTED READING PROGRAM FALL 2015

BY ADAM ANDERSON

CAPACITY DIMENSION AND FRACTALS

Let $S \subseteq \mathbb{R}^n$ where n = 1, 2, or 3

n-dimensional box

- n = 1: Closed interval
- n = 2: Square
- n = 3: Cube

Let $N(\varepsilon)$ = smallest number of n-dimensional boxes of side length ε necessary to cover S

Ζ

X

y

If L = 10cm and ε = 1cm, it takes 10 boxes to cover L

If $\varepsilon = 0.5$ cm, it takes 20 boxes to cover L ... N(ε) $\propto \frac{1}{\varepsilon}$

CAPACITY DIMENSION AND FRACTALS $\underline{n = 2}$

Boxes of length ε to cover square S of side length L

 $N(\varepsilon) \propto \frac{1}{\varepsilon^2}$

If L = 20cm, area of S = 400cm²

 ε = 2cm: each box has area 4cm² It will take 100 boxes to cover S
 ε = 1cm: each box has area 1cm² It will take 400 boxes to cover S

CAPACITY DIMENSION AND FRACTALS N(ε) = $C \left(\frac{1}{\varepsilon}\right)^{D}$

$$\ln(N(\varepsilon)) = D \ln\left(\frac{1}{\varepsilon}\right) + \ln(C)$$

$$D = \frac{\ln(N(\varepsilon)) - \ln(C)}{\ln(\frac{1}{\varepsilon})}$$
 C just depends on scaling of S

Capacity Dimension: $\dim_{c} S = \lim_{\epsilon \to 0^{+}} \frac{\ln(N(\epsilon))}{\ln(\frac{1}{\epsilon})}$

ENSION AND FRACTALS

Stage 1:Stage 2:If $\varepsilon = \frac{1}{2}$, N(ε) = 3If $\varepsilon = \frac{1}{4}$, N(ε) = 9

Stage n: If $\varepsilon = \frac{1}{2^n}$, N(ε) = 3ⁿ $\frac{1}{2} = 2^n$

 $\lim_{\varepsilon \to 0^+} \frac{\ln(N(\varepsilon))}{\ln(\frac{1}{\varepsilon})} = \lim_{\varepsilon \to 0^+} \frac{\ln(3^n)}{\ln(2^n)} = \frac{n\ln(3)}{n\ln(2)} = \frac{\ln(3)}{\ln(2)} \approx 1.5849625$

The Sierpinski Gasket is ≈ 1.585 dimensional

A set with non-integer capacity dimension is called a **fractal**.

ITERATED FUNCTION SYSTEMS

An **Iterated Function System** (IFS) *F* is the union of the contractions $T_1, T_2 \dots T_n$

THEOREM: Let F be an iterated function system of contractions in \mathbb{R}^2 . Then there exists a unique compact subset A_F in \mathbb{R}^2 such that for any compact set B, the sequence of iterates $\{F^n(B)\}_{n=1}^{\infty}$ converges in the Hausdorff metric to A_F

 A_F is called the **attractor** of *F*.

This means that if we iterate any compact set in \mathbb{R}^2 under *F*, we will obtain a unique attractor (attractor depends on the contractions in F)

ITERATED FUNCTION SYSTEMS A function T : $\mathbb{R}^2 \to \mathbb{R}^2$ is **affine** if it is in the form

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} ax + by + e \\ cx + dy + f \end{bmatrix}$$

(linear function followed by translation)

We will deal with iterated function systems of affine contractions.

RANDOM ITERATION ALGORITHM

Drawing an attractor of IFS *F*:

- 1. Choose an arbitrary initial point $\vec{v} \in \mathbb{R}^2$
- 2. Randomly select one of the contractions T_n in F
- 3. Plot the point $T_n(\vec{v})$
- 4. Let $T_n(\vec{v})$ be the new \vec{v}
- 5. Repeat steps 2-4 to obtain a representation of A_F

1000 Iterations

5000 Iterations

20,000 Iterations

LET'S DRAW SOME FRACTALS!

ITERATIONS AND FIXED POINTS

Iterating = repeating the same procedure

Let f(x) be a function. $f(f(x)) = f^2(x)$ is the second iterate of x under f. $f(f(f((x))) = f^3(x)$ is the third iterate of x under f

> Example: $f(x) = x^2 + 1$ f(5) = 26 $f(f(5)) = f^2(5) = f(26) = 677$

ITERATIONS AND FIXED POINTS

A point *p* is a **fixed point** for a function *f* if its iterate is itself f(p) = p

Example:
$$f(x) = x^2$$

 $f(0) = 0$
 $f(f(0)) = f^2(0) = f(0) = 0$
Therefore 0 is a fixed point of f

METRIC SPACES

Let S be a set. A **metric** is a distance function d(x, y) that satisfies 4 axioms $\forall x, y \in S$

1.
$$d(x, y) \ge 0$$

2. $d(x, y) = 0$ if and only if $x = y$
3. $d(x, y) = d(y, x)$
4. $d(x, z) \le d(x, y) + d(y, z)$

Example: Absolute Value \mathbb{R} d(x, y) = |x - y|(\mathbb{R} , d) is a **metric space**

METRIC SPACES

Let (S, d) be a metric space.

A sequence $\{x_n\}_{n=1}^{\infty}$ in S **converges** to $x \in S$ if $\lim_{n \to \infty} d(x_n, x) = 0$ This means that terms of the sequence approach a value s

A sequence is **Cauchy** if for all $\varepsilon > 0$ there exists a positive integer Nsuch that whenever $n, m \ge N$, $d(x_n, x_m) < \varepsilon$ This means that terms of the sequence get closer together

(S, d) is a **complete metric space** if every Cauchy sequence in S converges to a member of S

CONTRACTION MAPPING THEOREM

Let (S, d) be a metric space.

A function T: S \rightarrow S is a **contraction** if $\exists q \in [0,1)$ such that $d(T(x), T(y)) \leq q * d(x, y)$

CONTRACTION MAPPING THEOREM

Contraction Mapping Theorem:

If (S, d) is a complete metric space, and T is a contraction, then as $n \to \infty$, $T^n(x) \to$ unique fixed point $x^* \forall x \in S$

A set S is **closed** if whenever *x* is the limit of a sequence of members of T, *x* actually is in T.

A set S is **bounded** if it there exists $x \in S$ and r > 0 such that $\forall s \in S$, d(x, s) < r Means S is contained by a "ball" of finite radius

A set $S \subseteq \mathbb{R}^n$ is **compact** if it is closed and bounded

Let *K* denote all compact subsets of \mathbb{R}^2

If *B* is a nonempty member of *K*, and \vec{v} is any point in \mathbb{R}^2 , the distance from \vec{v} to *B* is

 $d(\vec{v}, B) = minimum value of \|\vec{v} - \vec{b}\| \forall \vec{b} \in B$

(distance from point to a compact set)

If *A* and *B* are members of *K*, then the distance from *A* to *B* is $d(A, B) = maximum value of d(\vec{a}, B)$ for $\vec{a} \in A$ (distance between compact sets)

Means we take the point in *A* that is most distant from any point in *B* and find the minimum distance between it an any point in *B*

The **Hausdorff metric** on *K* is defined as: D(A, B)=maximum of d(A, B) and d(B, A)

Iterated Function System: $f_1\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

 $f_2 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Render Details:

Point size: 1px # of iterations: 100,000

Iterated Function System: $f_1 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ $f_2 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$ $f_3 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 0 & -1/2 \\ 1/2 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$

Render Details:

Point size: 1px # of iterations: 100,000

Iterated Function System: $^{1}/_{3}$ 0 $+ \begin{bmatrix} 2/3 \\ 2/3 \end{bmatrix}$ f_1 1/3 = 0 1/2 /3 2/3 -2/3 f_2 + = $3 \begin{array}{c} 0 \\ 1/3 \end{array} \left[\begin{pmatrix} x \\ y \end{pmatrix} + \right]$ -/3 $\begin{bmatrix} -2/3 \\ 2/3 \end{bmatrix}$ f_3 + = 0 /3 f_4 = $\frac{1}{3}$ 13/40 13/40 $\begin{pmatrix} x \\ v \end{pmatrix}$ -13/40 $f_5 \begin{pmatrix} n \\ v \end{pmatrix}$ =

Render Details: Point size: 1px # of iterations: 100,000

Iterated Function System:

$$f_{1} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & .16 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$f_{2} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} .85 & .04 \\ -.04 & .85 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{bmatrix} 0 \\ 1.6 \end{bmatrix}$$

$$f_{3} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} .2 & -.26 \\ .23 & .22 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{bmatrix} 0 \\ 1.6 \end{bmatrix}$$

$$f_{4} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} -.15 & .28 \\ .26 & .24 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{bmatrix} 0 \\ .44 \end{bmatrix}$$

Probabilities: $f_1: 1\%$ $f_2: 85\%$ $f_3: 7\%$ $f_4: 7\%$

Iterated Function System: $\begin{bmatrix} 1/2 & -\sqrt{3}/6 \\ \sqrt{3}/6 & 1/2 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ $f_2\begin{pmatrix} x\\ y \end{pmatrix} = \begin{bmatrix} 1/3 & 0\\ 0 & 1/3 \end{bmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} x\\ y$ $1/\sqrt{3}$ 1/3 $f_3\begin{pmatrix} x\\ y \end{pmatrix} = \begin{bmatrix} 1/3 & 0\\ 0 & 1/3 \end{bmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{bmatrix} 1/\sqrt{3}\\ -1/3 \end{bmatrix}$ $f_4\begin{pmatrix} x\\ y \end{pmatrix} = \begin{bmatrix} 1/3 & 0\\ 0 & 1/2 \end{bmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} x\\ y$ $-1/\sqrt{3}$ 1/3 $f_5\begin{pmatrix} x\\ y \end{pmatrix} = \begin{bmatrix} 1/3 & 0\\ 0 & 1/3 \end{bmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{bmatrix} -1/\sqrt{3}\\ -1/3 \end{bmatrix}$ $) = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{bmatrix} 0 \\ 2/3 \end{bmatrix}$ $f_6 \begin{pmatrix} x \\ y \end{pmatrix}$ $f_7\begin{pmatrix} x\\ y \end{pmatrix} = \begin{bmatrix} 1/3 & 0\\ 0 & 1/ \end{bmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{bmatrix} x\\ y \end{bmatrix}$

THANKS

Mentor – Kasun Fernando

Author and Book Provider – Denny Gulick

Some IFS Formulas from <u>Agnes Scott College</u>

Graphs Created with <u>Desmos Graphing</u> <u>Calculator</u> ENCOUNTERS with CHAOS AND FRACTALS Second Edition

Denny Gulick

